
Reducing the Carbon Footprint of EdTech with
Repurposed Devices

Jennifer Switzer∗, Subash Katel†, Jaemok Christian Lee‡,
Ashwin Rohit Alagiri Rajan §, Ryan Kastner ¶, and Pat Pannuto ∥

Computer Science and Engineering. UC San Diego
La Jolla, CA, USA

Email: ∗jswitze@ucsd.edu, †skatel@ucsd.edu, ‡jal105@ucsd.edu,
§aalagiri@ucsd.edu, ¶kastner@ucsd.edu, ∥ppannuto@ucsd.edu

Abstract—Education technology (EdTech) is an important
tool for streamlining and improving course administration and
teaching. Many modern EdTech tools rely on cloud services to
host containerized applications. While this is convenient, it is
also costly in terms of both dollars and carbon emissions. We
propose the alternative approach of hosting containerized EdTech
applications on local clusters of upcycled Android devices.

We perform an evaluation of the Google Pixel Fold for
handling educational workloads. Our findings suggest that such
repurposed device could effectively bridge the gap between
mobile and traditional computing platforms in education, open
new avenues for accessible educational computing environments.

I. INTRODUCTION

Cloud computing has a significant carbon footprint, with the
industry being responsible for 2.5-3.7% of worldwide green-
house gas emissions [9]. While sustainable computing efforts
have traditionally focused on energy efficiency, about 50% of
the carbon emissions associated with datacenter hardware is
incurred during manufacture [1]. This number—also referred
to as computing’s embodied carbon—is exacerbated by the fact
that hardware is frequently replaced to maximize performance.

One way to curb embodied carbon is by reducing the
demand for new machines. Discarded smartphones are a
plentiful source of surprisingly powerful computing hardware.
Since they are already manufactured and would otherwise be
discarded, they incur no embodied carbon. By redeploying
them, we prevent the manufacture of carbon-intensive servers.
Previous work has shown that a small cluster of decom-
missioned smartphones can—at a significantly lower carbon
footprint than traditional cloud computing—be repurposed to
approximately match and sometimes even exceed the perfor-
mance of a new, modern server using benchmarking suites
with synthetics workloads [14].

In this work, we propose the repurposing of unwanted
smartphones for a specific use-case: Education technology
(EdTech).

Many recent EdTech tools make use of containerized ap-
plications, which in our experience are often deployed using
cloud providers like Amazon Web Services (AWS). While this
simplifies initial deployment, it is both expensive to maintain
(in terms of the cost per hour to rent machines) and carbon-
intense.

EdTech applications are an attractive target for repurposed
hardware. First, they are generally less latency-sensitive than
commercial applications. If a student has to wait an extra
second or two for their grade, it is likely not a problem.
Second, many EdTech applications exhibit extremely bursty
behavior. Recent studies have shown that student submission
patterns for online assignments are highly concentrated near
deadlines. Nieberding and Heckler found that approximately
50% of students completed assignments within the final 24
hours before the deadline, with a steep increase in submissions
in the hours immediately preceding the due date [10]. This pat-
tern results in short periods of intense computational demand
followed by longer periods of relative inactivity. Smartphones
are a good fit for these bursty workloads due to their very low
idle power. Unlike traditional servers that consume significant
energy even when idle, smartphones can enter deep sleep
states during periods of inactivity, dramatically reducing power
consumption. When demand spikes, they can quickly wake and
process the workload, then return to a low-power state [13].
This means that in addition to the embodied carbon savings
possible by employing repurposed hardware, there is also the
potential for a reduction in operational emissions.

The rest of this work outlines our design and implemen-
tation of a basic smartphone-based EdTech platform, and
provides benchmarking results for two containerized EdTech
applications, PrairieLearn and Jupyter notebook.

II. BACKGROUND

Many existing EdTech workloads make use of container-
ized applications (e.g. Docker). Some prominent examples in
computer science education are outlined below.

a) Gradescope Autograder: Gradescope is an educa-
tional platform that, among other features, allows students
to submit assignments. Gradescope includes an autograder
feature for programming assignments. This allows instructors
to define a grading script that is automatically run against
student submissions. In the background, the autograder is
implemented using Docker containers. The instructor’s grading
script is built into a Docker image, and each time a student
submits an assignment a new instance is spun up [4].



Android 14+

KVM

Node 1

Pod
jupyter notebook

prairelearn

Android 14+

KVM

Node N

Pod
jupyter notebook

prairelearn

...Kubernetes
load
balancer

Fig. 1. A visual representation of the the cluster design. Phones running
Android 14 and above are compatible with the system; We deploy a KVM
instance on each device and connect the devices in a Kubernetes cluster.
Each device acts as a Kubernetes node and runs the target EdTech container.
We have experimented with both Jupyter notebooks and PraireLearn. The
Kubernetes load balancer could be run either on an external machine or
another smartphone.

Depending on the implementation, the autograder containers
might be run on local machines or in the cloud. In our
experience, they are often run on AWS.

b) PraireLearn: PrairieLearn is a web-based homework
platform. It allows instructors to define problem templates
with variable parameters that can be automatically randomized
to generate new questions [15]. PrairieLearn is typically run
within Docker [12]. Similar to the Gradescope Autograder, a
course’s specific PrairieLearn instance might be hosted locally
or with a cloud provider like AWS.

c) JupyterHub: JupyterHub allows a school or organiza-
tion to run containerized Jupyter notebooks in the cloud or
locally. It is built on Kubernetes using Docker [5].

III. SYSTEM DESIGN

While cloud providers like Google Cloud and AWS provide
easy access to hardware, they are both expensive and carbon-
intensive to operate [9]. The main design goal of our proposed
system is to make local containerized deployments more
accessible for EdTech applications.

We note that cloud-hosted services have two main advan-
tages over local deployments:

1) No CapEX expenditure: Although the hourly price to
rent cloud machines is significant, they require no up
front investment.

2) Easier implementation: Deploying containers locally re-
quires properly configured and maintained hardware. In
many cases, it is easier to simply request cloud instances.

Assuming that we are able to source real unwanted hard-
ware, our repurposed system is able to address the first

problem. The value depreciation for Android smartphones is
significant [6], making unwanted Androids a good target for
building out a low-cost system.

Point #2 is difficult to address, however. Previous work has
observed that implementing arbitrary software on top of the
Android ecosystem is particularly difficult [7], [14]. Asking
under-resourced instructors to work within such a difficult
environment is a tall ask.

However, we find that recent versions of Android make this
problem significantly more surmountable with the inclusion of
virtualization capabilities in the Android kernel.

In Android 14 and above, KVM (kernel-based virtual ma-
chine) is built into the kernel. We use this capability to
implement the system outlined in Figure 1. Each smartphone
runs an Ubuntu-based virtual machine, on top of which we
deploy a Kubernetes Pod. The Pod hosts the Docker container
of interest–we test both Jupyter notebooks and PrairieLearn. A
collection of smartphones can be connected into a Kubernetes
cluster with a load balancer to distribute jobs.

We have built an Ubuntu image that can be deployed on
any device running Android 14 and above. Setting up a new
device requires only a handful of terminal commands, which
can be bundled into a script. We plan to make the image and
associated script open-source.

Our test system makes use of a number of Google Pixel
Folds, which were released in 2023. We made the decision to
focus on the Pixel Fold for practical reasons–our lab had a
large surplus of these devices. While the Pixel Fold is quite
modern, with the short 2-3 year average lifespan of consumer
smartphones, we can reasonably expect that in the next 1-
2 years smartphones with similar capabilities will become
available on the secondary market.

IV. BENCHMARKING

This section provides an overview of the capabilities of the
Pixel Fold smartphone in terms of general compute and GPU
metrics. GPU capabilities in particular are interesting given
growing student interest in AI/ML, as well as the significant
dollar cost of purpose-built GPUs.

A. OpenCL Benchmarks

We use the mixbench OpenCL benchmark [8] to evaluate
the GPU performance characteristics of the Google Pixel Fold.
We compare against a reference NVIDIA GTX 1080 Ti, which
are commonly used for coursework at our university.

The GFLOPS vs Arithmetic Intensity graph demonstrates
that the Pixel Fold reaches a peak performance of about 700
GFLOPS for FP32 operations, while the 1080 Ti achieves
approximately 10,000 GFLOPS (difference = 15.3x). For
integer operations, the difference is more pronounced where
the Fold reaches a maximum of 189 GIOPS while the 1080
Ti reaches around 4200 GIOPS (difference = 22x).

The Execution time vs Arithmetic Intensity is arguably
the more important graph and we see similar result to the
performance graph. The FP32 Execution time peaks at 26.60
ms for an Arithmetic Intensity of 128.250 for the Fold while



Arithmetic Intensity (Iops/byte)

101

102

103

104
GF

LO
PS

Pixel Fold
1080 Ti

0 25 50 75 100 125
Arithmetic Intensity (Iops/byte)

100

101

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Pixel Fold
1080 Ti

Fig. 2. Single Precision GPU characteristics for Pixel Fold and 1080 Ti

Arithmetic Intensity (Iops/byte)

101

102

103

GI
OP

S

Pixel Fold
1080 Ti

0 25 50 75 100 125
Arithmetic Intensity (Iops/byte)

100

101

102

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Pixel Fold
1080 Ti

Fig. 3. Integer GPU characteristics for Pixel Fold and 1080 Ti

the 1080 Ti tops out at 1.74 ms (difference = 15.3x). The
INT32 Execution times are much more pronounced where the
Pixel Fold tops out at 91.19 ms and the 1080 Ti at around
4.15 ms (difference = 22x). The differences being the same as
Performance is expected, but there are some noise values in the
Fold’s execution times particularly at 8.75 and 9.25 Iops/Byte
and Flops/Byte Intensities.

25

50

75

100

Ra
te

 (n
or

m
ed

)

11.0

Base Rate

38.1

Base RatePixel Fold
AWS c5.4xlarge

perlbenchgcc mcf
omnetpp

xalancbmkx264
deepsjengleela

exchange2 xz

25

50

75

100

Ra
te

 (n
or

m
ed

)

11.9

39.2

Peak Rate

Fig. 4. Measure of peak intrate for the SPEC intrate suite for Pixel Fold
versus a c5.4xlarge AWS instance.

B. SPEC Benchmarks

The SPEC CPU 2017 benchmarking tool was chosen to
assess the processing capabilities of the Linux VM running on
the Pixel Fold. The CPU performance was specifically targeted
by running tests from the SPECrate Integer Test Suite. This
test suite runs programs designed for CPU intensive operations
such as filtering large quantities of spam (500.perlbench r),
or recursively generating non-trivial Sudoku puzzles (548.ex-
change2 r). As these programs are executed, different metrics
are collected. Among these metrics is the base rate. The base
rate is defined as:

base rate = number of copies ∗ time on reference machine
time on system under test

(1)
where the number of copies is the number of concurrently
running copies of the benchmark. Figure 1 shows a bar graph
of the base rate of the integer rate test suite run on the Pixel
Fold. We compare against an AWS EC2 instance of type
c5.4xlarge, which costs 16.32 USD per day.

V. EDTECH APPLICATIONS

This section outlines the performance of the Google Pixel
Fold on two types of EdTech applications, Jupyter notebooks
and PrairieLearn.

A. Jupyter Server Hosting

We deploy and test two Jupyter notebooks: a basic ed-
ucational notebook and a more resource-intensive machine
learning notebook.

1. Machine Learning Notebook
This notebook contained code for training a convolutional
neural network (CNN) on the MNIST dataset.

As shown in Figure 5, the ML notebook on the Pixel
device maintained a consistent CPU utilization of around 60%



throughout the test. We also deployed this notebook on an n2d-
standard-8 Google Cloud machine, which has 8 vCPUs and
32 GB RAM. The n2d machine exhibited a CPU utilization
of around 50%. It completed the training task approximately
5x faster than the Pixel Fold. This is not too surprising given
that the Pixel Fold has only 12 GB of memory compared to
the n2d machine’s 32 GB.

0 500 1000 1500 2000 2500
Runtime (seconds)

0

20

40

60

80

100

CP
U 

Ut
iliz

at
io

n 
(%

)

Pixel
Cloud

Fig. 5. System CPU Utilization for Machine Learning Notebook on Pixel vs
Cloud (n2d-standard-8 Google Cloud instance [3])

2. Basic Data Science/CV Notebook
This notebook contained typical data analysis and computer
vision tasks used in introductory computer science course.

As illustrated in Figure 6, the basic notebook on the
Pixel device shows comparable latency compared to the n2d-
standard-8 deployment. The CPU utilization is also compara-
ble.

15 20 25 30 35 40 45
Runtime (s)

0

5

10

15

La
te

nc
y 

(m
s) Pixel Cloud

0 10 20 30 40
Runtime (s)

0

50

100

CP
U 

Ut
il.

 (%
)

Pixel Cloud

Fig. 6. Latency and CPU utilization comparison for Basic Data Science/CV
Notebook on Pixel vs Cloud (n2d-standard-8 Google Cloud instance [3])

B. PrairieLearn

PrairieLearn is a software tool that allows for the admin-
istration of online courses. Users can create and manage

0 20 40 60 80 100
0

25

50

75

100
Memory Utilization (%)

0 20 40 60 80 100
Time Elapsed (sec)

0

200

400 CPU Utilization (%)

Fig. 7. Memory and CPU Utilization of an Exam Administered through
PrairieLearn on Pixel Fold. CPU peaks occur when grading is initiated.

TABLE I
A SUMMARY OF EMBODIED AND OPERATIONAL EMISSIONS FOR ONE

C5.4XLARGE INSTANCE VERSUS FOUR PIXEL FOLDS.

Embodied Operational 3-year total
Power 3yr carbon

c5.4xl 336 kgCO2-e 144 W 252 kgCO2-e 588 kgCO2-e
Pixel 0 kgCO2-e 80 W 140 kgCO2-e 140 kgCO2-e

classes through tasks such as assigning students autograded
assignments. We host a sample PrairieLearn course on a
Pixel Fold and measure the CPU and memory utilization for
the scenario of a student completing an autograded exam.
Questions ranged from basic addition, to matrix multiplication.

Figure 2 shows multiple distinct peaks in both memory and
CPU usage following a student action of turning in an answer.
While the phone’s CPU was only periodically under stress, the
relatively high memory utilization means that it would only be
possible to host 1-2 instances of PrairieLearn per device.

C. Key takeaway

We find that the smartphone studied is capable of hosting the
EdTech applications of interest with reasonable performance.
A limiting factor is the relatively low memory-to-CPU ratio
typical of the smartphone platform. The device studied–the
Pixel Fold–has more memory than most smartphones with
12 GB for its 8 cores. However, this is still significantly less
than the 32 GB provisioned for the 8 core n2d Google Cloud
instance. Depending on the target application, this may or may
not be a problem.

For simple applications, the performance seems to be more
than sufficient.

VI. CARBON SAVINGS

We hypothesize that a smartphone-based EdTech system
will reduce carbon emissions compared to a traditional cloud-
computing based alternative. There are two ways that the
smartphone system saves carbon: First, by reducing embodied
emissions by preventing the manufacture of new, purpose-built



devices; and second, by reducing operational emissions due
to the relatively power-efficient operation of the smartphone
platform.

We compare against the alternative of using Amazon web
services (AWS) for docker container hosting. We make this
decision for two reasons. First, in our experience AWS is
commonly used for EdTech applications. Second, a third-
party tool exists for estimating the carbon footprint of AWS
instances [2].

We compare the Pixel Fold against an AWS c5.4xlarge EC2
machine, for which we have collected SPEC benchmark data.
Based on SPEC results, a c5.4xlarge EC2 machine is able to
achieve approximately 4x the throughput of a Pixel Fold on
the SPEC intrate benchmark suite. This is shown by the dotted
horizontal lines in Figure 4.

We therefore assume that it takes approximately 4 Pixel
Fold smartphones to match the computational capabilities
of a c5.4xlarge machine. We compare the three-year carbon
emissions of a single c5.4xlarge instance against a cluster of
four Pixel Fold smartphones.

a) Embodied emissions: Embodied emissions are the
emissions associated with the manufacture of the device. In
the case of our smartphone-based system, we assume that the
phones in use are repurposed and therefore incur no embodied
emissions. For a full-scale system it would be necessary to take
into account the embodied footprint of peripheral hardware
like USB hubs, but for this analysis we only consider the
hardware itself.

For the c5.4xlarge EC2 instance, we use a third-party
calculator to estimate the embodied carbon of the instance
as 336 kgCO2 [2].

b) Operational emissions: To get a rough estimate of
operational emissions, we assume that all devices are operating
at 100% utilization. This is generally the case when running
the SPEC benchmark suite.

We use the same calculator as above [2] to estimate the
power consumption of the AWS c5.4xlarge EC2 instance at
100% utilization as 144 W. We estimate the Pixel Fold’s peak
power consumption to be no more than 20 W. Since there are
four phones in our comparison cluster, the total power draw
of the phone system is 80 W at maximum.

We assume that we are operating within the California grid
with an average grid carbon intensity of 0.200 kgCO2/kWh
[11].

The results of the analysis are summarized in Table I. The
phone-based system incurs 4x fewer emissions.

REFERENCES

[1] Andreas Busa. Life cycle assesssment of dell r740 server.
https://www.delltechnologies.com/asset/en-us/products/servers/
technical-support/Full LCA Dell R740.pdf, 2019. Accessed: 2021-06-
01.

[2] Teads Engineering. Estimator for aws instances. https://engineering.
teads.com/sustainability/carbon-footprint-estimator-for-aws-instances/,
2024.

[3] Google. Google cloud n2d machine types. https://cloud.google.com/
compute/docs/general-purpose-machines#n2d machines, 2024.

[4] Gradescope. Gradescope autograder documentation: Technical de-
tails. https://gradescope-autograders.readthedocs.io/en/latest/specs/. Ac-
cessed: 2024-08-05.

[5] Project Jupyter. Jupyterhub. https://jupyter.org/hub. Accessed: 2024-08-
05.

[6] Adrian Kingsley-Hughes. Your android smartphone could be worthless
after a few years, 2022. Accessed: 2024-08-04.

[7] Noah Klugman, Veronica Jacome, Meghan Clark, Matthew Podolsky,
Pat Pannuto, Neal Jackson, Aley Soud Nassor, Catherine Wolfram,
Duncan Callaway, Jay Taneja, and Prabal Dutta. Experience: Android
resists liberation from its primary use case. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking,
MobiCom ’18, page 545–556, New York, NY, USA, 2018. Association
for Computing Machinery.

[8] Elias Konstantinidis and Yiannis Cotronis. A quantitative roofline
model for gpu kernel performance estimation using micro-benchmarks
and hardware metric profiling. Journal of Parallel and Distributed
Computing, 107:37–56, 2017.

[9] Hessam Lavi. Measuring greenhouse gas emissions in data centres: the
environmental impact of cloud computing. https://www.climatiq.io/blog/
measure-greenhouse-gas-emissions-carbon-data-centres-cloud-computing.
Accessed: 2024-08-04.

[10] Megan Nieberding and Andrew F. Heckler. Patterns in assignment sub-
mission times: Procrastination, gender, grades, and grade components.
Phys. Rev. Phys. Educ. Res., 17:013106, Jun 2021.

[11] California Independent System Operator. California iso. https://www.
caiso.com/. Accessed: 2024-10-02.

[12] PrairieLearn. Prairielearn. https://prairielearn.readthedocs.io/en/latest/.
Accessed: 2024-08-05.

[13] Pijush Kanti Dutta Pramanik, Nilanjan Sinhababu, Bulbul Mukherjee,
Sanjeevikumar Padmanaban, Aranyak Maity, Bijoy Kumar Upadhyaya,
Jens Bo Holm-Nielsen, and Prasenjit Choudhury. Power consumption
analysis, measurement, management, and issues: A state-of-the-art re-
view of smartphone battery and energy usage. ieee Access, 7:182113–
182172, 2019.

[14] Jennifer Switzer, Gabriel Marcano, Ryan Kastner, and Pat Pannuto.
Junkyard computing: Repurposing discarded smartphones to minimize
carbon. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS 2023, page 400–412, New York, NY, USA,
2023. Association for Computing Machinery.

[15] Matthew West, Geoffrey L Herman, and Craig Zilles. Prairielearn:
Mastery-based online problem solving with adaptive scoring and rec-
ommendations driven by machine learning. In 2015 ASEE Annual
Conference & Exposition, pages 26–1238, 2015.


